D-BCAM Head (A2086) Manual

©2017, Kevan Hashemi,alignment.hep.brandeis.edu

Contents

Description
Design
Operation
Quiescent Current
Image Dynamic Range
Laser Diodes
Radiation Tests
Development

Description

The D-BCAM Head (A2086) is a Long-Wire Data Acquisition (LWDAQ) Device that reads out two ICX424 (or equivalent) image sensors and controls four light sources. The image sensors are mounted on two ICX424 Minimal Heads (A2076) connected to the A2086 board with two 12-way flex cables. The light sources are mounted on two Dual Laser Heads (A2074) connected to the A2086 board with two 6-way flex cables.


Figure: Black D-BCAM Head (A2086) Printed Circuit Board Drawing.

The D-BCAM Head is similar to the N-BCAM Head (A2083), but accommodates a second sensor with the help of pairs of the radiation-tolerant n-channel mosfet UM6K34N, and controls two more laser diodes with command bits DC12 and DC13.

Design

Note: All our schematics and Gerber files are distributed under the GNU General Public License.

S2086_1: LWDAQ Interface.
S2086_3: Level Shifters.
S2086_3: Logic and Switches.
Code: Firmware source code and jedec files.
Black D-BCAM Circuits: Dimensions of Black D-BCAM main board and laser side board.

Operation

The A2086A is a LWDAQ device of type ICX424 (6) when we read it out one pixel at a time, and device type ICX424Q (7) when we read it out with quadruple pixels. When we flash one of its LED arrays, we can use device type ICX424 (6) or ICX424Q (7), because these have the same allocation of bits for flash jobs. The A2071E and A2037E LWDAQ Drivers support both device types, but you will need firmware version 6+ for the A2071E and 18+ for the A2037E. The A2086A does not implement the functions of the enhanced ICX424 and ICX424Q device types. The table below gives the device bit allocations implemented by the A2086A.

VDS DC16 DC15 DC14 DC13 DC12 DC11 DC10 DC9 DC8 DC7 DC6 DC5 DC4 DC3 DC2 DC1
0 PXBN X X ON4 ON3 ON2 ON1 CCD1 WAKE LB SUB V3 V2 V1 H RDP
Table 1: Command Bit Allocation of the A2082A.

The PXBN bit enables pixel binning to produce quadruple-sized pixels. The V1-V3 bits control the three vertical phases of the IXC424. When we assert the CCD1 bit, we select image sensor No1. Otherwise we select sensor No2. When we assert ON1-ON4 we turn on sources No1 to No4.


Figure: The White Rectangle Error. This error occurs when we specify the wrong source device type. While the image sensor is exposing, we must hold vertical clock phase V1 low. If we flash one of the A2082 LED arrays using a device type other than IXC424 (6) or ICX424Q (7), V1 will not be held low, and the White Rectangle Error appears.

The A2086A does not use DC14 and DC15, which give the Virtual Device Type in the enhanced ICX424 device behavior. All four virtual devices supported by the enhanced behavior are handled the same way, as a dual image sensor, quad light source device with optional quadruple-pixel readout.

The A2086 uses two pairs of UM6K34N mosfets as switches to select between the two image sensor outputs PX1 and PX2. According to our tests with x-rays, the threshold voltage of this 0.9-V mosfet drops by less than 0.1 V after 1.3 kGy. We used pairs of a similar mosfet, the UM6K31N, in the LWDAQ Multiplexer (A2085) to select from fourteen sets of LWDAQ return signals. In the A2085, the analog switches had to accommodate input voltages in the range −0.7-5.0 V. The threshold voltage of he mosfet had to be greater than 0.7 V to make sure we could disconnect a voltage of −0.7 V. The UM6K31N has a threshold voltage 1.0-2.3 V. In order to be sure to connect a voltage of +5 V with a threshold voltage of 2.3 V, we provided a 7.5 V voltage level for the gate drive of the mosfets. In the case of the A2086, the two pixel voltages are already AC-coupled onto VCOM = 1.4 V and have a maximum deviation of ±0.4 V. The UM6K34N threshold of 0.3-0.9 V permits us to connect 1.4±0.4 V with a gate voltage of 2.7 V or higher. Our logic power supply is nominally 3.5 V, and will be at least 3.1 V given +5V power is guaranteed to be 3.1 V or above, and the saturation voltage of Q2 is tens of millivolts. We can disconnect 1.4±0.4 V with a gate voltage of 0.1 V or lower. Our logic output is <100 mV for a high-impedance load like a mosfet gate. Thus we are able to make simple analog switches for our pixel voltages using pairs of these mosfets.

We use the same mosfets to switch on the laser diodes. With a gate voltage of 3.5 V, the UM6K34N has typical channel resistance less than 1.7 Ω. This resistance is insignificant compared to the 100-Ω series resistor R21 we use to drop the +15V we provide to the two A2076 dual laser heads.

Quiescent Current

he following table shows the quiescent current of several un-irradiated circuits with no sensors or sources attached.


Figure: D-BCAM Head Current Consumption with All Auxilliary Circuits attached.

We add the following current consumption entries to the Analyzer Tool database.


Figure: Analyzer Tool Entries for D-BCAM Head. Top is with all sensors and sources connected. Bottom is for nothing connected.

Waking up the board turns on all the ±15V power supply. The power supply switch consumes 7 mA from +15V and 3 mA from −15. The op-amps consume tens of milliamps together. When we add two image sensors (CCDs), they consume another 13 mA from +15V only.

Image Dynamic Range

Laser Diodes

Radiation Tests

Development